
講義メモ

・p.40「値型と参照型」から

提出フォロー：ミニ演習 mini039.cs

・int型の定数として TAX を10で初期化しよう（税率10％）
・これを用いて、500円の商品の税込み価格を表示しよう
　例「500円 税込み 550円」

作成例

//ミニ演習 mini039.cs
using System; //System名前空間の利用を宣言
class Mini037 //クラスの定義
{ //クラス定義の開始
 public static void Main() //開始時に動作するメソッドMain
 { //メソッド定義の開始
 const int TAX = 10; //税率を定数で定義して用いる
 int price = 500; //価格
 Console.WriteLine("{0}円 税込み {1}円", price, price * (100 + TAX) / 100);
 } //メソッド定義の終了
} //クラス定義の終了

p.40 値型と参照型

・int型は大きさが32ビットで整数用なので、32ビット分のメモリを確保して、そこに格納すれば良い
・このような「型の大きさが確定している」型を値型という
・対して、string型は0文字以上の文字列を扱うので、データの大きさがわからない
・そこで、別の場所にデータを格納し、その開始位置の情報（リファレンス、参照）を変数の値として持つ手法で解決す

る。
・このような「参照を持つ」型を参照型といい、string型やユーザ定義型などが該当する
・なお「string str = “ABC”;」という１行は下記のように実行される
　① メモリのどこかに文字列”ABC”が格納される（ちなみにこれはプログラム開始時に行われ終了まで有効）
　② 変数用の領域に、参照（番地情報）の大きさの変数strが用意される
　③ ①の参照（番地情報）が②に代入される

p.41 データ型

・値型には、数値型、文字型、論理型がある
・数値型には整数型と実数型（小数点を持つ値のための型）
※コンピュータにおいては整数と実数は扱いが異なり、整数は「その値」実数は「およその値（誤差がある前提）」

p.41 データ型：.NET型

・値型には２つの名前があり、int、doubleなどのC言語から引き継がれた古い型名と、C#の動作の基盤である .NET
フレームワーク(p.8)で定めた型名（.NET型）がある
・一般的には古い型名が使われることが多いため、テキストも講義も基本的に古い型名を用いる
・しかし、C#システムからのヘルプ表示やエラー通知では.NET型が使われるので、確認しておこう
・例： 古い型名 int ⇒ .NET型 System.Int32
・.NET型における整数型は型の名前の中にビット数が入っているので、型の大きさがわかりやすい
　※これを理由として古い型名を使わない/推奨しないチームルールの場合もある

　※なお、C言語ではint型などのビット数が不定（処理系依存）なので、C#で固定に改良されている
・.NET型の「System.」はプログラム冒頭で「using System;」を記述してあれば省略してOK
　※チームルールで「using System;」を使わない/推奨しない場合もある

p.43 整数型

・int型は32ビットで負の数も格納可能なので、その範囲として、232＝4,294,967,296通りの情報から、半分を負の数
用に、残りを0と正の数に用いる。よって、int型（.NET型Int32）で扱える値の範囲は -2,147,483,648 から
2,147,483,647 となる
・C#システムではint型がもっとも効率よく動作するようになっているが、0に近い値しか用いない場合、使わない領域
が増えて無駄になる。そこで、int型より扱える値の範囲が狭い型が提供されている
　・sbyte型（.NET型SByte）8ビットなので 28＝256通りの情報で、-128から127まで
　・short型（.NET型Int16）16ビットなので 216＝65536通りの情報で、-32,768から32,767まで
・そして、int型では扱えない大きさの値を扱う型も提供されている
　・long型（.NET型Int64）64ビットなので 264通りの情報で、 -9,223,372,036,854,775,808から
9,223,372,036,854,775,807まで
・また、プログラムにおいては負の数を持たないデータもあるので、intおよび上記を0以上専用にした符号なし（
unsigned）型も提供されている。整数側の範囲が倍になり、負の数が紛れ込むことを防止できる。
　・byte型（.NET型Byte）8ビットなので 28＝256通りの情報で、0から255まで
　・ushort型（.NET型UInt16）16ビットなので 216＝65536通りの情報で、0から65,535まで
　・uint型（.NET型UInt32）32ビットなので 232＝4,294,967,296通りの情報で、0から4,294,967,295まで
　・ulong型（.NET型UInt64）64ビットなので 264通りの情報で、 0から18,446,744,073,709,551,615まで

p.43 整数型：MaxValueとMinValue

・C#が提供している型を現わす構造体（第11章）には型の最大値を返すプロパティ（属性情報）MaxValueと、最小値
を返す MinValueがある
・型名がそのまま構造体の名前になっているので「型名.MaxValue」「型名.MinValue」でプログラムの中で型の最大
値、最小値を扱える

p.44 type01.cs

//p.44 type01.cs すべての整数型の最大値と最小値を表示
using System;
class type01
{
 public static void Main()
 {
 Console.WriteLine("sbyte: {0}～{1}", sbyte.MinValue, sbyte.MaxValue); //符号あり8ビット
 Console.WriteLine("short: {0}～{1}", short.MinValue, short.MaxValue); //符号あり16ビット
 Console.WriteLine("int: {0}～{1}", int.MinValue, int.MaxValue); //符号あり32ビット
 Console.WriteLine("long: {0}～{1}",long.MinValue, long.MaxValue); //符号あり64ビット
 Console.WriteLine(); //空行を開ける
 Console.WriteLine("byte: {0}～{1}", byte.MinValue, byte.MaxValue); //符号なし8ビット
 Console.WriteLine("ushort:{0}～{1}", ushort.MinValue, ushort.MaxValue); //符号なし16ビット
 Console.WriteLine("uint: {0}～{1}", uint.MinValue, uint.MaxValue); //符号なし32ビット
 Console.WriteLine("ulong: {0}～{1}", ulong.MinValue, ulong.MaxValue); //符号なし64ビット
 }
}

アレンジ演習：p.44 type01.cs

・表示結果を３桁カンマ区切りにしよう
・型名を.NET型にしよう
・（できれば）符号ありの4行において「～」を中央に揃えよう

作成例

//アレンジ演習：p.44 type01.cs すべての整数型の最大値と最小値を表示
using System;
class type01
{
 public static void Main()
 {
 Console.WriteLine("SByte: {0,26:#,#}～{1,0:#,#}", SByte.MinValue, SByte.MaxValue);
 Console.WriteLine("Int16: {0,26:#,#}～{1,0:#,#}", Int16.MinValue, Int16.MaxValue);
 Console.WriteLine("Int32: {0,26:#,#}～{1,0:#,#}", Int32.MinValue, Int32.MaxValue);
 Console.WriteLine("Int64: {0,26:#,#}～{1,0:#,#}", Int64.MinValue, Int64.MaxValue);
 Console.WriteLine();
 Console.WriteLine("Byte :{0}～{1,0:#,#}", Byte.MinValue, Byte.MaxValue);
 Console.WriteLine("UInt16:{0}～{1,0:#,#}", UInt16.MinValue, UInt16.MaxValue);
 Console.WriteLine("UInt32 {0}～{1,0:#,#}", UInt32.MinValue, UInt32.MaxValue);
 Console.WriteLine("UInt64:{0}～{1,0:#,#}", UInt64.MinValue, UInt64.MaxValue);
 }
}

p.45 整数型：.Parse(文字列)メソッド

・数字の列になっている文字列は、そのままでは計算などには使えない
・よって、数字型のデータに型変換する必要があり、これを実現するのが「型名.Parse(文字列)メソッド」
・たとえば、文字列”123”を整数123にするには、int n = int.Parse(“123”); とすれば良い
・文字列はstring型の変数に代入できるので、string str = “123”; int x = int.Parse(str); とできる
・この手法は、数値を文字列で得てしまう処理から数値を受け取る場合に必須
・具体的にはp.34の「Console.ReadLine()」で数値を入力したい場合に用いる（文字列として受け取る必要があるの
で、受け取ってから数値型に変換して用いる
・なお「型名.Parse(文字列)メソッド」に、その型の数値に変換できない文字列を渡すと、実行時エラーになり「ハンドル
されていない例外: System.FormatException: 入力文字列の形式が正しくありません」と表示されてプログラムが異
常終了する（対処法は第13章にて）

p.47 type02.cs

//p.47 type02.cs
using System;
class type02
{
 public static void Main()
 {
 Console.Write("整数を入力してください---");
 int x = int.Parse(Console.ReadLine()); //文字列を得て整数に変換した値で初期化
 Console.WriteLine("今の数字を2倍すると{0}ですね。", x * 2);

 Console.Write("あなたの年齢を入力してください---");
 ushort age = ushort.Parse(Console.ReadLine()); //文字列を得て整数に変換した値で初期化
 Console.WriteLine("あと{0}年で100歳ですね", 100 - age);

 }
}

アレンジ演習：p.47 type02.cs

・台形の上辺の長さ、下辺の長さ、高さをコンソールから入力したら面積を表示する処理を追加しよう
・なお、３つの値の型は UInt32とする

作成例

//アレンジ演習p.47 type02.cs
using System;
class type02
{
 public static void Main()
 {
 Console.Write("整数を入力してください---");
 int x = int.Parse(Console.ReadLine()); //文字列を得て整数に変換した値で初期化
 Console.WriteLine("今の数字を2倍すると{0}ですね。", x * 2);

 Console.Write("あなたの年齢を入力してください---");
 ushort age = ushort.Parse(Console.ReadLine()); //文字列を得て整数に変換した値で初期化
 Console.WriteLine("あと{0}年で100歳ですね", 100 - age);
 //【以下追加】
 Console.Write("台形の上辺の長さ：");
 UInt32 upper = UInt32.Parse(Console.ReadLine()); //文字列を得て整数に変換した値で初期化
 Console.Write("台形の下辺の長さ：");
 UInt32 lower = UInt32.Parse(Console.ReadLine()); //文字列を得て整数に変換した値で初期化
 Console.Write("台形の高さ：");
 UInt32 height = UInt32.Parse(Console.ReadLine()); //文字列を得て整数に変換した値で初期化
 Console.WriteLine("この台形の面積は{0}", (upper + lower) * height / 2);
 }
}

p.47 type02.cs 補足：メソッドで得た値を他のメソッドに渡して初期化に用いる

・このプログラムでは「メソッドで得た値を他のメソッドに渡して初期化に用いる」ことを：
　int x = int.Parse(Console.ReadLine());
　この１行で行っている。これは定番処理なので、分解する必要はないが、理解の為に分解すると、下記のようになる

（２つの変数を省略できている）
　① string str; //入力用の文字列型変数の宣言
　② str = Console.ReadLine(); //コンソールから数字列を入力
　③ int x; //変換結果用の整数変数の宣言
　④ x = int.Parse(str); //コンソールからえた数字列をint型に変換

p.45 整数型：ConvertクラスのTo型名(文字列)メソッド

・.NET型については、Parseの代わりに「To型名(文字列)メソッド」も利用できる
・このメソッドはConvertクラスにあるので「Convert.To型名(文字列)」の形式で呼び出すこと
・たとえば、文字列”123”をUInt32型123にするには、int n = Convert.ToUInt32.Parse(“123”); とすれば良い

p.47 type03.cs

//p.47 type03.cs
using System;
class type03
{
 public static void Main()
 {
 Console.Write("整数を入力してください---");
 int x = Convert.ToInt32(Console.ReadLine()); //文字列を得て整数に変換した値で初期化
 Console.WriteLine("今の数字を2倍すると{0}ですね。", x * 2);

 Console.Write("あなたの年齢を入力してください---");
 ushort age = Convert.ToUInt16(Console.ReadLine()); //文字列を得て整数に変換した値で初期化
 Console.WriteLine("あと{0}年で100歳ですね", 100 - age);
 }
}

アレンジ演習：p.47 type03.cs

・円の半径をコンソールから入力したら円周と面積を表示する処理を追加しよう
・なお、半径の値の型は UInt64とし、円周率は3.14とする

作成例

//p.47 type03.cs
using System;
class type03
{
 public static void Main()
 {
 Console.Write("整数を入力してください---");
 int x = Convert.ToInt32(Console.ReadLine()); //文字列を得て整数に変換した値で初期化
 Console.WriteLine("今の数字を2倍すると{0}ですね。", x * 2);

 Console.Write("あなたの年齢を入力してください---");
 ushort age = Convert.ToUInt16(Console.ReadLine()); //文字列を得て整数に変換した値で初期化
 Console.WriteLine("あと{0}年で100歳ですね", 100 - age);
 //【以下追加】
 Console.Write("円の半径：");
 UInt64 r = Convert.ToUInt64(Console.ReadLine()); //文字列を得て整数に変換した値で初期化
 Console.WriteLine("円周は{0}、体積は{1}", 2 * 3.14 * r, 3.14 * r * r);
 }
}

p.47 type03.cs 補足

・「int x = Convert.ToInt32(Console.ReadLine());」と型名の表現を同時に用いるのは避けた方が良い
　「UInt32 x = Convert.ToInt32(Console.ReadLine());」とすることが推奨されることがある

p.48 浮動小数点数型

・実数のコンピュータ内における表現方法は複数あり、最も柔軟で利用しやすい代わりに誤差がでやすいのが浮動小

数点数型
・浮動小数点数型は下記の２つの型がある
　・float型（.NET型Single）32ビットで単精度なので誤差が大きくなりやすい
　・double型（.NET型Double）64ビットで倍精度なので誤差を小さくできる
・誤差を減らすと変数のサイズが増加してしまうので、誤差を許容できる場合は、変数のサイズが小さくなるfloat型を
選ぶと良い
　※ Unityでは座標計算において小数点以下を用いないので、基本的に実数はfloat/Single型の利用が多い
・なお、浮動小数点数型はどちらも符号有りで、符号なし型は存在しない
・浮動小数点数型も「型名.MaxValue」「型名.MinValue」でプログラムの中で型の最大値、最小値を扱える
・なお、これらをそのままConsole.WriteLineなどで表示する指数表記になる

p.49 type04.cs

//p.49 type04.cs 浮動小数点数型の最大値と最小値を表示
using System;
class type04
{
 public static void Main()
 {
 Console.WriteLine("float: {0}～{1}", float.MinValue, float.MaxValue);
 Console.WriteLine("double:{0}～{1}", double.MinValue, double.MaxValue);
 }
}

アレンジ演習：p.49 type04.cs

・1.0f / 7.0f でfloat型の変数を初期化、1.0 / 7.0 でfloat型とdouble型の変数を初期化して表示することで、精度の違
いを確認する処理を追加しよう
※ 1.0f / 7.0fの「f」はfloat型扱いの数値であることを示すサフィックス（p.59で解説）

作成例

//アレンジ演習：p.49 type04.cs 浮動小数点数型の最大値と最小値を表示
using System;
class type04
{
 public static void Main()
 {
 Console.WriteLine("float: {0}～{1}", float.MinValue, float.MaxValue);
 Console.WriteLine("double:{0}～{1}", double.MinValue, double.MaxValue);
 //【以下追加】
 float f = 1.0f / 7.0f; //単精度変数fを1/7で初期化
 Console.WriteLine("float : {0}", f);
 double d = 1.0 / 7.0; //倍精度変数dを1/7で初期化
 Console.WriteLine("double: {0}", d);
 }
}

p.49 Math.Powメソッド

・WrireLine/Write/ReadLineメソッドのあるConsoleクラスや、To〇メソッドのあるConvertクラスのように、C#が提供
する便利なクラスとしてMathクラスがある
・Mathクラスは算術演算系のメソッドなどを提供するクラスで、べき乗を返すPowメソッドがある
・p.49の枠の中はメソッドの形式を示す書式で
　・「public static」で「Math.Pow」形式でどこからでも呼べる事を示す
　・「double」で実行結果（戻り値）が倍精度実数型で返される事を示す
　・「(double x, double y)」で倍精度実数型の２値を受け取ることを示す（xとyは特に意味はなく、省略される場合もあ
る）
・よって、Math.Pow(実数①, 実数②) で呼び出し、結果をdouble型変数に代入すれば良いことがわかる
　例： double oct = Math.Pow(2.0, 3.0); // 23＝8が代入される

提出：アレンジ演習：p.49 type04.cs

次回予告：「p.50 type05.cs」の解説とアレンジ演習から

